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Introduction

THE recent development of various methods of modulation such as PCM
and PPM which exchange bandwidth for signal-to-noise ratio has in-

tensified the interest in a general theory of communication. A basis for

such a theory is contained in the important papers of Nyquist 1 and Hartley2

on this subject. In the present paper we will extend the theory to include a

number of new factors, in particular the effect of noise in the channel, and

the savings possible due to the statistical structure of the original message

and due to the nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at

one point either exactly or approximately a message selected at another

point. Frequently the messages have meaning; that is they refer to or are

correlated according to some system with certain physical or conceptual

entities. These semantic aspects of communication are irrelevant to the

engineering problem. The significant aspect is that the actual message is

one selected from a set of possible messages. The system must be designed

to operate for each possible selection, not just the one which will actually

be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any

monotonic function of this number can be regarded as a measure of the in-

formation produced when one message is chosen from the set, all choices

being equally likely. As was pointed out by Hartley the most natural

choice is the logarithmic function. Although this definition must be gen-

eralized considerably when we consider the influence of the statistics of the

message and when we have a continuous range of messages, we will in all

cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:

1. It is practically more useful. Parameters of engineering importance

1 Nyquist, H., "Certain Factors Affecting Telegraph Speed," Bell System Technical Jour-

nal, April 1924, p. 324; "Certain Topics in Telegraph Transmission Theory," .4. I.E. E.

Tians., v. 47, April 1928, p. 617.
2 Hartley, R. V. L., "Transmission of Information," Bell Svsteni Technical Journal, Julv

1928, p. 535.
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such as time, bandwidth, number of relays, etc., tend to vary linearly with

the logarithm of the number of possibilities. For example, adding one relay

to a group doubles the number of possible states of the relays. It adds 1

to the base 2 logarithm of this number. Doubling the time roughly squares

the number of possible messages, or doubles the logarithm, etc.

2. It is nearer to our intuitive feeling as to the proper measure. This is

closely related to (1) since we intuitively measure entities by linear com-

parison with common standards. One feels, for example, that two punched

cards should have twice the capacity of one for information storage, and two

identical channels twice the capacity of one for transmitting information.

3. It is mathematically more suitable. Many of the limiting operations

are simple in terms of the logarithm but would require clumsy restatement in

terms of the number of possibilities.

The choice of a logarithmic base corresponds to the choice of a unit for

measuring information. If the base 2 is used the resulting units may be

called binary digits, or more briefly bits, a word suggested by J. W. Tukey.

A device with two stable positions, such as a relay or a flip-flop circuit, can

store one bit of information. N such devices can store N bits, since the

total number of possible states is 2N and log22* = N. If the base 10 is

used the units may be called decimal digits. Since

log2 M = logio M/logi 2

= 3.32 log™ M,

a decimal digit is about 3£ bits. A digit wheel on a desk computing machine

has ten stable positions and therefore has a storage capacity of one decimal

digit. In analytical work where integration and differentiation are involved

the base e is sometimes useful. The resulting units of information will be

called natural units. Change from the base a to base b merely requires

multiplication by logb a.

By a communication system we will mean a system of the type indicated

schematically in Fig. 1. It consists of essentially five parts:

1. An information source which produces a message or sequence of mes-

sages to be communicated to the receiving terminal. The message may be

of various types : e.g. (a) A sequence of letters as in a telegraph or teletype

system; (b) A single function of time /(/) as in radio or telephony; (c) A

function of time and other variables as in black and white television—here

the message may be thought of as a function /(.v, y, t) of two space coordi-

nates and time, the light intensity at point (x, y) and time / on a pickup tube

plate; (d) Two or more functions of time, say /(/), g{t), £(/)—this is the

case in "three dimensional" sound transmission or if the system is intended

to service several individual channels in multiplex; (e) Several functions of
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several variables—in color television the message consists of three functions

/(•v> 3*> Oj S(xt Ji 0> h(x, y, I) defined in a three-dimensional continuum

—

we may also think of these three functions as components of a vector field

defined in the region—similarly, several black and white television sources

would produce "messages" consisting of a number of functions of three

variables; (f) Various combinations also occur, for example in television

with an associated audio channel.

2. A transmitter which operates on the message in some way to produce a

signal suitable for transmission over the channel. In telephony this opera-

tion consists merely of changing sound pressure into a proportional electrical

current. In telegraphy we have an encoding operation which produces a

sequence of dots, dashes and spaces on the channel corresponding to the

message. In a multiplex PCM system the different speech functions must

be sampled, compressed, quantized and encoded, and finally interleaved

INFORMATION
SOURCE TRANSMITTER RECEIVER DESTINATION

SIGNAL O
MESSAGE

RECEIVED
SIGNAL

NOISE
SOURCE

Fig. 1—Schematic diagram of a general communication system.

properly to construct the signal. Vocoder systems, television, and fre-

quency modulation are other examples of complex operations applied to the

message to obtain the signal.

3. The channel is merely the medium used to transmit the signal from

transmitter to receiver. It may be a pair of wires, a coaxial cable, a band of

radio frequencies, a beam of light, etc.

4. The receiver ordinarily performs the inverse operation of that done by

the transmitter, reconstructing the message from the signal.

5. The destination is the person (or thing) for whom the message is in-

tended.

We wish to consider certain general problems involving communication

systems. To do this it is first necessary to represent the various elements

involved as mathematical entities, suitably idealized from their physical

counterparts. We may roughly classify communication systems into three

main categories: discrete, continuous and mixed. By a discrete system we

will mean one in which both the message and the signal are a sequence of
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discrete symbols. A typical case is telegraphy where the message is a

sequence of letters and the signal a sequence of dots, dashes and spaces.

A continuous system is one in which the message and signal are both treated

as continuous functions, e.g. radio or television. A mixed system is one in

which both discrete and continuous variables appear, e.g., PCM transmis-

sion of speech.

We first consider the discrete case. This case has applications not only

in communication theory, but also in the theory of computing machines,

the design of telephone exchanges and other fields. In addition the discrete

case forms a foundation for the continuous and mixed cases which will be

treated in the second half of the paper.

PART I: DISCRETE NOISELESS SYSTEMS

1. The Discrete Noiseless Channel

Teletype and telegraphy are two simple examples of a discrete channel

for transmitting information. Generally, a discrete channel will mean a

system whereby a sequence of choices from a finite set of elementary sym-

bols Si S n can be transmitted from one point to another. Each Of the

symbols S { is assumed to have a certain duration in time /,- seconds (not

necessarily the same for different St , for example the dots and dashes in

telegraphy). It is not required that all possible sequences of the Si be cap-

able of transmission on the system; certain sequences only may be allowed.

These will be possible signals for the channel. Thus in telegraphy suppose

the symbols are: (1) A dot, consisting of line closure for a unit of time and

then line open for a unit of time; (2) A dash, consisting of three time units

of closure and one unit open; (3) A letter space consisting of, say, three units

of line open; (4) A word space of six units of line open. We might place

the restriction on allowable sequences that no spaces follow each other (for

if two letter spaces are adjacent, it is identical with a word space). The

question we now consider is how one can measure the capacity of such a

channel to transmit information.

In the teletype case where all symbols are of the same duration, and any

sequence of the 32 symbols is allowed the answer is easy. Each symbol

represents five bits of information. If the system transmits n symbols

per second it is natural to say that the channel has a capacity of 5n bits per

second. This does not mean that the teletype channel will always be trans-

mitting information at this rate—this is the maximum possible rate and

whether or not the actual rate reaches this maximum depends on the source

of information which feeds the channel, as will appear later.
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In the more general case with different lengths of symbols and constraints

on the allowed sequences, we make the following definition:

Definition: The capacity C of a discrete channel is given by

C = Lim !SS*02
T-+ao i-

where N(T) is the number of allowed signals of duration T.

It is easily seen that in the teletype case this reduces to the previous

result. It can be shown that the limit in question will exist as a finite num-

ber in most cases of interest. Suppose all sequences of the symbols Si ,
• • •

,

Sn are allowed and these symbols have durations i\ , , l„ What is the

channel capacity? If N(l) represents the number of sequences of duration

/ we have

N(l) = N(l - /,) + N(t - h) + • • • + N(t - In)

The total number is equal to the sum of the numbers of sequences ending in

Si , Si , • • •
, Sn and these are Nil - h), N(t - to),--- , N(t - /„), respec-

tively. According to a well known result in finite differences, N(l) is then

asymptotic for large / to A'n where X is the largest real solution of the

characteristic equation:

X~h + X~' 2 + ••• + X'tn = 1

and therefore

C = log X

In case there are restrictions on allowed sequences we may still often ob-

tain a difference equation of this type and find C from the characteristic

equation. In the telegraphy case mentioned above

N(t) = N(l - 2) + Ml - 4) + N(t - 5) + N(t - 7) + N(t - 8)

+ N(t - 10)

as we see by counting sequences of symbols according to the last or next to

the last symbol occurring. Hence C is — log /i where /j is the positive

root of 1 = m
2 + M

4 + M
5 + M

7 + M
s + M

10
- Solving this we find C = 0.539.

A very general type of restriction which may be placed on allowed se-

quences is the following : We imagine a number of possible states a x , a2 ,
• •

,

am . For each state only certain symbols from the set Si , • • •
, Sn can be

transmitted (different subsets for the different states). When one of these

has been transmitted the state changes to a new state depending both on

the old state and the particular symbol transmitted. The telegraph case is

a simple example of this. There are two states depending on whether or not
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a space was the last symbol transmitted. If so then only a dot or a dash

can be sent next and the state always changes. If not, any symbol can be

transmitted and the state changes if a space is sent, otherwise it remains

the same. The conditions can be indicated in a linear graph as shown in

Fig. 2. The junction points correspond to the states and the lines indicate

the symbols possible in a state and the resulting state. In Appendix I it is

shown that if the conditions on allowed sequences can be described in this

form C will exist and can be calculated in accordance with the following

result:

Theorem 1 : Let 6$ be the duration of the s
th symbol which is allowable in

state i and leads to state j. Then the channel capacity C is equal to log

W where W is the largest real root of the determinant equation:

\ZW-W- 8*1 = 0.

where 8 y = 1 if i = j and is zero otherwise.

DASH

DOT

DA5H

WORD SPACE

Fig. 2—Graphical representation of the constraints on telegraph symbols.

=

For example, in the telegraph case (Fig. 2) the determinant is:

-1 (B-2 + W4
)

(TJ/-3 + if/-") (ji/-2 + w~* _ i)

On expansion this leads to the equation given above for this case.

2. The Discrete Source or Information

We have seen that under very general conditions the logarithm of the

number of possible signals in a discrete channel increases linearly with time.

The capacity to transmit information can be specified by giving this rate of

increase, the number of bits per second required to specify the particular

signal used.

We now consider the information source. How is an information source

to be described mathematically, and how much information in bits per sec-

ond is produced in a given source? The main point at issue is the effect of

statistical knowledge about the source in reducing the required capacity
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of the channel, by the use of proper encoding of the information. In teleg-

raphy, for example, the messages to be transmitted consist of sequences

of letters. These sequences, however, are not completely random. In

general, they form sentences and have the statistical structure of, say, Eng-

lish. The letter E occurs more frequently than Q, the sequence TH more

frequently than XP, etc. The existence of this structure allows one to

make a saving in time (or channel capacity) by properly encoding the mes-

sage sequences into signal sequences. This is already done to a limited ex-

tent in telegraphy by using the shortest channel symbol, a dot, for the most

common English letter E; while the infrequent letters, Q, X, Z are repre-

sented by longer sequences of dots and dashes. This idea is carried still

further in certain commercial codes where common words and phrases are

represented by four- or live-letter code groups with a considerable saving in

average time. The standardized greeting and anniversary telegrams now

in use extend this to the point of encoding a sentence or two into a relatively

short sequence of numbers.

We can think, of a discrete source as generating the message, symbol by

symbol. It will choose successive symbols according to certain probabilities

depending, in general, on preceding choices as well as the particular symbols

in question. A physical system, or a mathematical model of a system which

produces such a sequence of symbols governed by a set of probabilities is

known as a stochastic process.3 We may consider a discrete source, there-

fore, to be represented by a stochastic process. Conversely, any stochastic

process which produces a discrete sequence of symbols chosen from a finite

set may be considered a discrete source. This will include such cases as:

1. Natural written languages such as English, German, Chinese.

2. Continuous information sources that have been rendered discrete by some

quantizing process. For example, the quantized speech from a PCM
transmitter, or a quantized television signal.

3. Mathematical cases where we merely define abstractly a stochastic

process which generates a sequence of symbols. The following are ex-

amples of this last type of source.

(A) Suppose we have live letters A, B, C, D, E which are chosen each

with probability .2, successive choices being independent. This

would lead to a sequence of which the following is a typical example.

BDCBCECCCADCBD I) A A E C E E A
ABBDAEECACEEBAEECBCEAD
This was constructed with the use of a table of random numbers.4

3 See, for example, S. Chandrasekhar, "Stochastic Problems in Physics and Astronomy,"

Reviews of Modern Physics, v. 15, Xo. 1, January 1943. p. 1.

1 Kendall and Smith. "Tables of Random Sampling Numbers," Cambridge, 1939.
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(B) Using the same five letters let the probabilities be .4, .1, .2, .2, .1

respectively, with successive choices independent. A typical

message from this source is then:

AAACDCBDCEAADADACEDA
EADCABEDADDCECAAAAAD

(C) A more complicated structure is obtained if successive symbols are

not chosen independently but their probabilities depend on preced-

ing letters. In the simplest case of this type a choice depends only

on the preceding letter and not on ones before that. The statistical

structure can then be described by a set of transition probabilities

Pi(j), the probability that letter i is followed by letter,/. The in-

dices i and j range over all the possible symbols. A second equiv-

alent way of specifying the structure is to give the "digram" prob-

abilities p(i, j), i.e., the relative frequency of the digram % j. The

letter frequencies p(i), (the probability of letter i), the transition

probabilities p { (j) and the digram probabilities p(i,j) are related by

the following formulas.

Pd) = Z pd, j) = Z pU, i) = Z pU)pM
i i i

p(i,j) = p(i)pi(j)

T,pi(j) = HpV) = T,paj) = i-

As a specific example suppose there are three letters A, B, C with the prob-

ability tables:

Piij)

A
j

H c

A 4
5

1

i B i

2
1
1

C 1
2

2
5

1

10

2f

1 (i

-2'Y

2

"2T

pa, j) j
A B C

A 4
TrT

i

T5

i B 8
2 7

8
27

C 1

2 7
4

TS'S
1

T5~5

A typical message from this source is the following:

ABBABABABABABABBBABBBBBAB
ABABABABBBACACABBABBBBABB
ABACBBBABA
The next increase in complexity would involve trigram frequencies

but no more. The choice of a letter would depend on the preceding

two letters but not on the message before that point. A set of tri-

gram frequencies p(i, j, k) or equivalently a set of transition prob-
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abilities pa{k) would be required. Continuing in this way one ob-

tains successively more complicated stochastic processes. In the

general //-gram case a set of //-gram probabilities p(ii , i2 ,
• •

, in)

or of transition probabilities />,, , »2 .... , 1-,,-,0'J is required to

specify the statistical structure.

(D) Stochastic processes can also be defined which produce a text con-

sisting of a sequence of "words." Suppose there are five letters

A, B, C, D, E and 16 "words" in the language with associated

probabilities:

.10 A .16BEBE .11 CABED .04 DEB

.04 ADEB .04 BED .05 CEED .15 DEED

.05 ADEE .02 BEED .08 DAB .01 EAB

.01 BADD .05 CA .04 DAD .05 EE

Suppose successive "words" are chosen 'independently and are

separated by a space. A typical message might be:

DAB EE A BEBE DEED DEB ADEE ADEE EE DEB BEBE
BEBE BEBE ADEE BED DEED DEED CEED ADEE A DEED
DEED BEBE CABED BEBE BED DAB DEED ADEB
If all the words are of finite length this process is equivalent to one

of the preceding type, but the description may be simpler in terms

of the word structure and probabilities. We may also generalize

here and introduce transition probabilities between words, etc.

These artificial languages are useful in constructing simple problems and

examples to illustrate various possibilities. We can also approximate to a

natural language by means of a series of simple artificial languages. The

zero-order approximation is obtained by choosing all letters with the same

probability and independently. The first-order approximation is obtained

by choosing successive letters independently but each letter having the

same probability that it does in the natural language. 6 Thus, in the first-

order approximation to English, E is chosen with probability .12 (its fre-

quency in normal English) and W with probability .02, but there is no in-

fluence between adjacent letters and no tendency to form the preferred

digrams such as TH, ED, etc. In the second-order approximation, digram

structure is introduced. After a letter is chosen, the next one is chosen in

accordance with the frequencies with which the various letters follow the

first one. This requires a table of digram frequencies Pi(j). In the third-

order approximation, trigram structure is introduced. Each letter is chosen

with probabilities which depend on the preceding two letters.

6 Letter, digram and trigram frequencies are given in "Secret and Urgent" by Fletcher

Pratt, Blue Ribbon Books 1939. Word frequencies are tabulated in "Relative Frequency
of English Speech Sounds," G. Dewey, Harvard University Press, 1923.
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3. The Series of Approximations to English

To give a visual idea of how this series of processes approaches a language,

typical sequences in the approximations to English have been constructed

and are given below. In all cases we have assumed a 27-symbol "alphabet,"

the 26 letters and a space.

1. Zero-order approximation (symbols independent and equi-probable).

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ
FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD

2. First-order approximation (symbols independent but with frequencies

of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI

ALHENHTTPA OOBTTVA NAH BRL
3. Second-order approximation (digram structure as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY
ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO

TIZIN ANDY TOBE SEACE CTISBE

4. Third-order approximation (trigram structure as in English).

IN NO 1ST LAT WHEY CRATICT FROURE BIRS GROCID
PONDENOME OF DEMONSTURES OF THE REPTAGIN IS

REGOACTIONA OF CRE
5. First-Order Word Approximation. Rather than continue with tetra-

gram, • •
, //-gram structure it is easier and better to jump at this

point to word units. Here words are chosen independently but with

their appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR
COME CAN DIFFERENT NATURAL HERE HE THE A IN

CAME THE TO OF TO EXPERT GRAY COME TO FUR-

NISHES THE LINE MESSAGE HAD BE THESE.

6. Second-Order Word Approximation. The word transition probabil-

ities are correct but no further structure is included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH

WRITER THAT THE CHARACTER OF THIS POINT IS

THEREFORE ANOTHER METHOD FOR THE LETTERS
THAT THE TIME OF WHO EVER TOLD THE PROBLEM
FOR AN UNEXPECTED

The resemblance to ordinary English text increases quite noticeably at

each of the above steps. Note that these samples have reasonably good

structure out to about twice the range that is taken into account in their

construction. Thus in (3) the statistical process insures reasonable text

for two-letter sequence, but four-letter sequences from the sample can

usually be fitted into good sentences. In (6) sequences of four or more
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words can easily be placed in sentences without unusual or strained con-

structions. The particular sequence of ten words "attack on an English

writer that the character of this" is not at all unreasonable. It appears

then that a sufficiently complex stochastic process will give a satisfactory

representation of a discrete source.

The first two samples were constructed by the use of a book of random
numbers in conjunction with (for example 2) a table of letter frequencies.

This method might have been continued for (3), (4), and (5), since digram,

trigram, and word frequency tables are available, but a simpler equivalent

method was used. To construct (3) for example, one opens a book at ran-

dom and selects a letter at random on the page. This letter is recorded.

The book is then opened to another page and one reads until this letter is

encountered. The succeeding letter is then recorded. Turning to another

page this second letter is searched for and the succeeding letter recorded,

etc. A similar process was used for (4), (5), and (6). It would be interest-

ing if further approximations could be constructed, but the labor involved

becomes enormous at the next stage.

4. Graphical Representation of a Markoff Process

Stochastic processes of the type described above are known mathe-

matically as discrete Markoff processes and have been extensively studied in

the literature.6 The general case can be described as follows: There exist a

finite number of possible "states" of a system; Si , S« , , Sn . In addi-

tion there is a set of transition probabilities; /»,•(/) the probability that if the

system is in state Si it will next go to state Sj . To make this Markoff

process into an information source we need only assume that a letter is pro-

duced for each transition from one state to another. The states will corre-

spond to the "residue of influence" from preceding letters.

The situation can be represented graphically as shown in Figs. 3, 4 and 5.

The "stales" are the junction points in the graph and the probabilities and
letters produced for a transition arc given beside the corresponding line.

Figure 3 is for the example B in Section 2, while Fig. 4 corresponds to the

example ('. In Fig. 3 there is only one state since successive letters are

independent. In Fig. 4 there are as many states as letters. If a trigram

example were constructed there would be at most n- states corresponding

to the possible pairs of letters preceding the one being chosen. Figure 5

is a graph for the case of word structure in example D. Here S corresponds

to the "space" symbol.

8 For a detailed treatment see M. Frechet, "Methods des fonctions arbitrages. Theorie
des £n6nements en chaine dans le cas d'un nombre fmi d'etats possibles." Paris, Gauthier-
Vi liars. 1<MK.
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5. Ergodic and Mixed Sources

As we have indicated above a discrete source for our purposes can be con-

sidered to be represented by a Markoff process. Among the possible discrete

Markoff processes there is a group with special properties of significance in

D .2

Fig. 3—A graph corresponding to the source in example B.

Fig. 4—A graph corresponding to the source in example C.

D__ • » S-

Fig. 5—A graph corresponding to the source in example D.

communication theory. This special class consists of the "ergodic" proc-

esses and we shall call the corresponding sources ergodic sources. Although

a rigorous definition of an ergodic process is somewhat involved, the general

idea is simple. In an ergodic process every sequence produced by the proc-
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ess is the same in statistical properties. Thus the letter frequencies,

digram frequencies, etc., obtained from particular sequences will, as the

lengths of the sequences increase, approach definite limits independent of

the particular sequence. Actually this is not true of every sequence but the

set for which it is false has probability zero. Roughly the ergodic property

means statistical homogeneity.

All the examples of artificial languages given above are ergodic. This

property is related to the structure of the corresponding graph. If the graph

has the following two properties7 the corresponding process will be ergodic:

1. The graph does not consist of two isolated parts A and B such that it is

impossible to go from junction points in part A to junction points in

part B along lines of the graph in the direction of arrows and also im-

possible to go from junctions in part B to junctions in part A.

2. A closed series of lines in the graph with all arrows on the lines pointing

in the same orientation will be called a "circuit." The "length" of a

circuit is the number of lines in it. Thus in Fig. 5 the series BEBES
is a circuit of length 5. The second property required is that the

greatest common divisor of the lengths of all circuits in the graph be

one.

If the first condition is satisfied but the second one violated by having the

greatest common divisor equal to d > 1, the sequences have a certain type

of periodic structure. The various sequences fall into d different classes

which are statistically the same apart from a shift of the origin (i.e., which

letter in the sequence is called letter 1). By a shift of from up to d — 1

any sequence can be made statistically equivalent to any other. A simple

example with d = 2 is the following: There are three possible letters a, b, c.

Letter a is followed with either ft ore with probabilities \ and f respec-

tively. Either b or c is always followed by letter a. Thus a typical sequence

is

abacacacabacababacac

This type of situation is not of much importance for our work.

If the first condition is violated the graph may be separated into a set of

subgraphs each of which satisfies the first condition. We will assume that

the second condition is also satisfied for each subgraph. We have in this

case what may be called a "mixed" source made up of a number of pure

components. The components correspond to the various subgraphs.

If Li , Ls , L. ,
• • • are the component sources we may write

L = piLi + p-J.-i + piU +

where />, is the probability of the component source L,

.

7 These arc restatements in terms of the graph of conditions given in Frechet.
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Physically the situation represented is this: There are several different

sources L\ , L2 , L3 , • which are each of homogeneous statistical structure

(i.e., they are ergodic). We do not know a priori which is to be used, but

once the sequence starts in a given pure component Li it continues indefi-

nitely according to the statistical structure of that component.

As an example one may take two of the processes defined above and

assume pi = .2 and pt = .8. A sequence from the mixed source

L = .2 Li + .8 L 2

would be obtained by choosing first L\ or Li with probabilities .2 and .8

and after this choice generating a sequence from whichever was chosen.

Except when the contrary is stated we shall assume a source to be ergodic.

This assumption enables one to identify averages along a sequence with

averages over the ensemble of possible sequences (the probability of a dis-

crepancy being zero). For example the relative frequency of the letter A
in a particular infinite sequence will be, with probability one, equal to its

relative frequency in the ensemble of sequences.

If Pi is the probability of state i and pi(j) the transition probability to

state j, then for the process to be stationary it is clear that the Pi must

satisfy equilibrium conditions:

Pi = HPipi(j)-
i

In the ergodic case it can be shown that with any starting conditions the

probabilities Pj(N) of being in state j after N symbols, approach the equi-

librium values as N —> 00

.

6. Choice, Uncertainty and Entropy

We have represented a discrete information source as a Markoff process.

Can we define a quantity which will measure, in some sense, how much in-

formation is "produced" by such a process, or better, at what rate informa-

tion is produced?

Suppose we have a set of possible events whose probabilities of occurrence

are Pi ,
po ,

, pn . These probabilities are known but that is all we know

concerning which event will occur. Can we find a measure of how much

"choice" is involved in the selection of the event or of how uncertain we are

of the outcome?

If there is such a measure, say H(pi
, p2 ,

• • •

, pn ), it is reasonable to re-

quire of it the following properties:

1. H should be continuous in the pi

.

2. If all the />, are equal, pi = - , then H should be a monotonic increasing
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function of n. With equally likely events there is more choice, or un-

certainty, when there are more possible events.

3. If a choice be broken down into two successive choices, the original

H should be the weighted sum of the individual values of H. The

meaning of this is illustrated, in Fig. 6. At the left we have three

possibilities pi = $, p% = J, p$ = |. On the right we first choose be-

tween two possibilities each with probability \, and if the second occurs

make another choice with probabilities §, \. The final results have

the same probabilities as before. We require, in this special case,

that

The coefficient \ is because this second choice only occurs half the time.

/6s . V
.1/6

Fig. 6—Decomposition of ;i choice from three possibilities.

In Appendix II, the following result is established:

Theorem 2: The only H satisfying the three above assumptions is of the

form:

// = -KJtptlogPi
i—i

where K is a positive constant.

This theorem, and the assumptions required for its proof, are in no way

necessary for the present theory. It is given chiefly to lend a certain plausi-

bility to some of our later definitions. The real justification of these defi-

nitions, however, will reside in their implications.

Quantities of the form 77 = — 2 />, log />, (the constant A' merely amounts

to a choice of a unit of measure) play a central role in information theory as

measures of information, choice and uncertainty. The form of U will be

recognized as that of entropy as defined in certain formulations of statistical

mechanics" where />, is the probability of a system being in cell i of its phase

space. 77 is then, for example, the H in Boltzmann's famous H theorem.

We shall call H = — 2 />, log /», the entropy of the set of probabilities

" See, for example, R. C. Tolman, "Principles of Statistical Mechanics," Oxford,

Clarendon, 1938.
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pi, •
, pn • If x is a chance variable we will write H(x) for its entropy;

thus -v is not an argument of a function but a label for a number, to differen-

tiate it from H(y) say, the entropy of the chance variable y.

The entropy in the case of two possibilities with probabilities p and q =

1 — p, namely

11 = - (p log p + q log q)

is plotted in Fig. 7 as a function of p.

The quantity H has a number of interesting properties which further sub-

stantiate it as a reasonable measure of choice or information.

/ \
/ \

/ \
H .6 / \/ \

BITS

.5 /
• \

/

\

\

/ \

/ \

/ \
/

\

\

Fig. 7—Entropy in the case of two possibilities with probabilities p and (1 — p).

1. H = if and only if all the pi but one are zero, this one having the

value unity. Thus only when we are certain of the outcome does H vanish.

Otherwise H is positive.

2. For a given n, H is a maximum and equal to log n when all the pi are

equal i.e., - ) . This is also intuitively the most uncertain situation.
tij

3. Suppose there are two events, x and y, in question with m possibilities

for the first and n for the second. Let p(i, j) be the probability of the joint

occurrence of i for the first and _; for the second. The entropy of the joint

event is

H(x, y) = - 2 P(i, J) l°g P(h j)

.
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while

my) = -zp(i,.i)\ogZp(ij).

It is easily shown that

H(x, y) < II(x) + H(y)

with equality only if the events are independent (i.e., p(i, j) = p(j) p(j)).

The uncertainty of a joint event is less than or equal to the sum of the

individual uncertainties.

4. Any change toward equalization of the probabilities pi , p 2 ,
• •

, p n

increases II. Thus if pi < p2 and we increase Pi , decreasing p2 an equal

amount so that pi and p2 are more nearly equal, then # increases. More
generally, if we perform any "averaging" operation on the pi of the form

P'i = Z) an Pi
i

where 2 a 'J = S <kj = 1, and all ay > 0, then // increases (except in the
* f

special case where this transformation amounts to no more than a permuta-
tion of the pj with H of course remaining the same).

5. Suppose there are two chance events x and y as in 3, not necessarily

independent. For any particular value i that x can assume there is a con-

ditional probability />,(/) tnat >' 'ias tne value/. This is given by

Mj) =
tUj) •

i

We define the conditional entropy of y, H x (y) as the average of the entropy

of y for each value of x, weighted according to the probability of getting

that particular x. That is

ffx(y) = -Z/>0\./) log />,(./)•

This quantity measures how uncertain we are of y on the average when we
know x. Substituting the value of />,(/) we obtain

H.(y) = -E pa, j) log pa, j) + z pa, j) iogz pa, /)
•; a i

= H(x, y) - H(x)

or

H(x, y) = II(x) + H x (y)
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The uncertainty (or entropy) of the joint event x, y is the uncertainty of x

plus the uncertainty of y when x is known.

6. From 3 and 5 we have

H{x) + H(y) > H(x, y) = H(x) + II x (y)

Hence

B(y) > II Ay)

The uncertainty of y is never increased by knowledge of x. It will be de-

creased unless .t and y are independent events, in which case it is not changed.

7. The Entropy of an Information Source

Consider a discrete source of the finite state type considered above.

For each possible state i there will be a set of probabilities pi(j) of pro-

ducing the various possible symbols j. Thus there is an entropy //, for

each state. The entropy of the source will be defined as the average of

these Hi weighted in accordance with the probability of occurrence of the

states in question:

H = T,PiHi

= --£p,-M;)iogM/)
i.i

This is the entropy of the source per symbol of text. If the Markoff proc-

ess is proceeding at a definite time rate there is also an entropy per second

H' = JLfjHi
i

where/,- is the average frequency (occurrences per second) of state i. Clearly

H' = mH

where m is the average number of symbols produced per second. H or H'

measures the amount of information generated by the source per symbol

or per second. If the logarithmic base is 2, they will represent bits per

symbol or per second.

If successive symbols are independent then H is simply —Zpt log pi

where p t is the probability of symbol /. Suppose in this case we consider a

long message of N symbols. It will contain with high probability about

ptN occurrences of the first symbol, 'p
2N occurrences of the second, etc.

Hence the probability of this particular message will be roughly

P = tf
ilf

ti
ilf

---pz
nN

or
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log p ± N2 pi log Pi
i

log/) = -NE

U = log */*

// is thus approximately the logarithm of the reciprocal probability of a

typical long sequence divided by the number of symbols in the sequence.

The same result holds for any source. Stated more precisely we have (see

Appendix III):

Theorem 3 : Given any e > and 5 > 0, we can find an N such that the se-

quences of any length N > Nq fall into two classes:

1. A set whose total probability is less than e.

2. The remainder, all of whose members have probabilities satisfying the

inequality

log
pl

TJ I ^ A

log p~ l

In other words we are almost certain to have —~~ very close to H when NN J

is large.

A closely related result deals with the number of sequences of various

probabilities. Consider again the sequences of length N and let them be

arranged in order of decreasing probability. We define n(q) to be the

number we must take from this set starting with the most probable one in

order to accumulate a total probability </ for those taken.

Theorem 4:

Lim
]^ ll) = H

when q does not equal or 1.

We may interpret log n(q) as the number of bits required to specify the

sequence when we consider only the most probable sequences with a total

probability q. Then N is the number of bits per symbol for the

specification. The theorem says that for large N this will be independent of

q and equal to //. The rate of growth of the logarithm of the number of

reasonably probable sequences is given by H, regardless of our interpreta-

tion of "reasonably probable." Due to these results, which are proved in

appendix III, it is possible for most purposes to treat the long sequences as

though there were just 2
HS

of them, each with a probability 2
_WA

.
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The next two theorems show that H and H' can be determined by limit-

ing operations directly from the statistics of the message sequences, without

reference to the states and transition probabilities between states.

Theorem 5: Let p(Bi) be the probability of a sequence B t of symbols from

the source. Let

GN = -^T, p(Bi) log p(Bt)

where the sum is over all sequences B< containing N symbols. Then GN

is a monotonic decreasing function of N and

Lim Gn = II.

Theorem 6: Let p(B i} Sj) be the probability of sequence Bi followed by

symbol Sj and pBi (Sj) = p(B< , Sj)/p(Bi) be the conditional probability of

Sj after B t . Let

FN = -HpiBuSj) log pBi (Sj)

where the sum is over all blocks B t of TV - 1 symbols and over all symbols

Si . Then FN is a monotonic decreasing function of N,

FN = NGN -(N-l) G#-i

,

G* = ^ E Fn
,

Fn ^ Gn ,

and Lim FN = B.
AT-»oo

These results are derived in appendix III. They show that a series of

approximations to E can be obtained by considering only the statistical

structure of the sequences extending over 1, 2, • • • N symbols. Fn is the

better approximation. In fact FN is the entropy of the Nlk
order approxi-

mation to the source of the type discussed above. If there are no statistical

influences extending over more than N symbols, that is if the conditional

probability of the next symbol knowing the preceding (N - 1) is not

changed by a knowledge of any before that, then FN = H. FK of course is

the conditional entropy of the next symbol when the (iV — 1) preceding

ones are known, while G N is the entropy per symbol of blocks of N symbols.

The ratio of the entropy of a source to the maximum value it could have

while still restricted to the same symbols will be called its relative entropy.

This is the maximum compression possible when we encode into the same

alphabet. One minus the relative entropy is the redundancy. The redun-
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dancy of ordinary English, not considering statistical structure over greater

distances than about eight letters is roughly 50%. This means that when

we write English half of what we write is determined by the structure of the

language and half is chosen freely. The figure 50% was found by several

independent methods which all gave results in this neighborhood. One is

by calculation of the entropy of the approximations to English. A second

method is to delete a certain fraction of the letters from a sample of English

text and then let someone attempt to restore them. If they can be re-

stored when 50% are deleted the redundancy must be greater than 50%.

A third method depends on certain known results in cryptography.

Two extremes of redundancy in English prose are represented by Basic

English and by James Joyces' book "Finigans Wake." The Basic English

vocabulary is limited to 850 words and the redundancy is very high. This

is reflected in the expansion that occurs when a passage is translated into

Basic English. Joyce on the other hand enlarges the vocabulary and is

alleged to achieve a compression of semantic content.

The redundancy of a language is related to the existence of crossword

puzzles. If the redundancy is zero any sequence of letters is a reasonable

text in the language and any two dimensional array of letters forms a cross-

word puzzle. If the redundancy is too high the language imposes too

many constraints for large crossword puzzles to be possible. A more de-

tailed analysis shows that if we assume the constraints imposed by the

language are of a rather chaotic and random nature, large crossword puzzles

are just possible when the redundancy is 50%. If the redundancy is 33%,

three dimensional crossword puzzles should be possible, etc.

8. Representation of the Encoding and Decoding Operations

We have yet to represent mathematically the operations performed by

the transmitter and receiver in encoding and decoding the information.

Either of these will be called a discrete transducer. The input to the

transducer is a sequence of input symbols and its output a sequence of out-

put symbols. The transducer may have an internal memory so that its

output depends not only on the present input symbol but also on the past

history. We assume that the internal memory is finite, i.e. there exists

a finite number m of possible states of the transducer and that its output is

a function of the present state and the present input symbol. The next

state will be a second function of these two quantities. Thus a transducer

can be described by two functions:

>'n = /(.v„ , an)

a»+i = g(-Vn , a„)
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where: .r„ is the n th input symbol,

an is the state of the transducer when the n"' input symbol is introduced,

y„ is the output symbol (or sequence of output symbols) produced when

x„ is introduced if the state is a n -

If the output symbols of one transducer can be identified with the input

symbols of a second, they can be connected in tandem and the result is also

a transducer. If there exists a second transducer which operates on the out-

put of the first and recovers the original input, the first transducer will be

called non-singular and the second will be called its inverse.

Theorem 7: The output of a finite state transducer driven by a finite state

statistical source is a finite state statistical source, with entropy (per unit

time) less than or equal to that of the input. If the transducer is non-

singular they are equal.

Let a represent the state of the source, which produces a sequence of

symbols x t ; and let /3 be the state of the transducer, which produces, in its

output, blocks of symbols jj . The combined system can be represented

by the "product state space" of pairs (a, /3). Two points in the space,

(ai , /3i) and (a2 /32), are connected by a line if ai can produce an x which

changes ft to ft , and this line is given the probability of that x in this case.

The line is labeled with the block of y, symbols produced by the transducer.

The entropy of the output can be calculated as the weighted sum over the

states. If we sum first on /3 each resulting term is less than or equal to the

corresponding term for a, hence the entropy is not increased. If the trans-

ducer is non-singular let its output be connected to the inverse transducer.

If H[ , #2 and H'3 are the output entropies of the source, the first and

second transducers respectively, then H[ > Hi > Ili = H[ and therefore

H[ = #2 •

Suppose we have a system of constraints on possible sequences of the type

which can be represented by a linear graph as in Fig. 2. If probabilities

Pi'j were assigned to the various lines connecting state i to stated this would

become a source. There is one particular assignment which maximizes the

resulting entropy (see Appendix IV).

Theorem 8: Let the system of constraints considered as a channel have a

capacity C. If we assign

Pa =si

Cr,i

where 1$ is the duration of the s
th

symbol leading from state i to state j

and the #,• satisfy

then H is maximized and equal to C.
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By proper assignment of the transition probabilities the entropy of sym-

bols on a channel can be maximized at the channel capacity.

9. The Fundamental Theorem for a Noiseless Channel

We will now justify our interpretation of H as the rate of generating

information by proving that H determines the channel capacity required

with most efficient coding.

Theorem 9: Let a source have entropy H (bits per symbol) and a channel

have a capacity C (bits per second). Then it is possible to encode the output

of the source in such a way as to transmit at the average rate — — e symbols

per second over the channel where e is arbitrarily small. It is not possible

C
to transmit at an average rate greater than —

.

The converse part of the theorem, that — cannot be exceeded, may beH
proved by noting that the entropy of the channel input per second is equal

to that of the source, since the transmitter must be non-singular, and also

this entropy cannot exceed the channel capacity. Hence H' < C and the

number of symbols per second = H'/H < C/H.
The first part of the theorem will be proved in two different ways. The

first method is to consider the set of all sequences of N symbols produced by

the source. For N large we can divide these into two groups, one containing

less than 2
H+v A members and the second containing less than 2

ffA
members

(where R is the logarithm of the number of different symbols) and having a

total probability less than p. As N increases 77 and fx approach zero. The
number of signals of duration T in the channel is greater than 2

(C~6)T
with

8 small when T is large. If we choose

'-(? + >

then there will be a sufficient number of sequences of channel symbols for

the high probability group when .V and T are sufficiently large (however

small X) and also some additional ones. The high probability group is

coded in an arbitrary one to one way into this set. The remaining sequences

are represented by larger sequences, starring and ending with one of the

sequences not used for the high probability group. This special sequence

acts as a start and stop signal for a different code. In between a sufficient

time is allowed to give enough different sequences for all the low probability

messages. This will require

T, = g + „) I,

\
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where <p is small. The mean rate of transmission in message symbols per

second will then be greater than

>-4+4T=[ (i - s) G/+x)
+5

(i
+ *)r
Q

As N increases 5, X and <p approach zero and the rate approaches — .

a
Another method of performing this coding and proving the theorem can

be described as follows: Arrange the messages of lengthN in order of decreas-

ing probability and suppose their probabilities are pi > p2 > ps

.

. . > pn -

s-l

Let P8 = ]C Pi '> that is P , is the cumulative probability up to, but not
1

yAcIuding, ps . We first encode into a binary system. The binary code for

message s is obtained by expanding Ps as a binary number. The expansion

is carried out to ma places, where mt is the integer satisfying:

log2 — < m s < 1 + log2 —
pa Ps

Thus the messages of high probability are represented by short codes and

those of low probability by long codes. From these inequalities we have

-1 < p. < -i

The code for Ps will differ from all succeeding ones in one or more of its

ms places, since all the remaining Pi are at least — larger and their binary

expansions therefore differ in the first ma places. Consequently all the codes

are different and it is possible to recover the message from its code. If the

channel sequences are not already sequences of binary digits, they can be

ascribed binary numbers in an arbitrary fashion and the binary code thus

translated into signals suitable for the channel.

The average number H' of binary digits used per symbol of original mes-

sage is easily estimated. We have

H' =±2ms ps

But,

and therefore,

i Z (log, I) f < i **.*. < £ ^ (l + ^Q P.
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— 2p. log p t < H' < — - Zp s log p.

As N increases —Zp s log p, approaches H, the entropy of the source andW
approaches H.

We see from this that the inefficiency in coding, when only a finite delay of

N symbols is used, need not be greater than — plus the difference between

the true entropy // and the entropy GN calculated for sequences of length N.

The per cent excess time needed over the ideal is therefore less than

9e+ J_ - 1.
//
T UN

This method of encoding is substantially the same as one found inde-

pendently by R. M. Fano.9 His method is to arrange the messages of length

N in order of decreasing probability. Divide this series into two groups of

as nearly equal probability as possible. If the message is in the first group

its first binary digit will be 0, otherwise 1. The groups are similarly divided

into subsets of nearly equal probability and the particular subset determines

the second binary digit. This process is continued until each subset contains

only one message. It is easily seen that apart from minor differences (gen-

erally in the last digit) this amounts to the same thing as the arithmetic

process described above.

10. Discussion

In order to obtain the maximum power transfer from a generator to a load

a transformer must in general be introduced so that the generator as seen

from the load has the load resistance. The situation here is roughly anal-

ogous. The transducer which does the encoding should match the source

to the channel in a statistical sense. The source as seen from the channel

through the transducer should have the same statistical structure as the

source which maximizes the entropy in the channel. The content of

Theorem 9 is that, although an exact match is not in general possible, we can

approximate it as closely as desired. The ratio of the actual rate of trans-

mission to the capacity C may be called the efficiency of the coding system.

This is of course equal to the ratio of the actual entropy of the channel

symbols to the maximum possible entropy.

In general, ideal or nearly ideal encoding requires a long delay in the

transmitter and receiver. In the noiseless case which we have been

considering, the main function of this delay is to allow reasonably good

''Technical Report No. 65. The Research Laboratory of Electronics. M. I. T.
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matching of probabilities to corresponding lengths of sequences. With a

good code the logarithm of the reciprocal probability of a long message

must be proportional to the duration of the corresponding signal, in fact

I

log p~
x

_ r
! ~T L

must be small for all but a small fraction of the long messages.

If a source can produce only one particular message its entropy is zero,

and no channel is required. For example, a computing machine set up to

calculate the successive digits of it produces a definite sequence with no

chance element. No channel is required to "transmit" this to another

point. One could construct a second machine to compute the same sequence

at the point. However, this may be impractical. In such a case we can

choose to ignore some or all of the statistical knowledge we have of the

source. We might consider the digits of tt to be a random sequence in that

we construct a system capable of sending any sequence of digits. In a

similar way we may choose to use some of our statistical knowledge of Eng-

lish in constructing a code, but not all of it. In such a case we consider the

source with the maximum entropy subject to the statistical conditions we

wish to retain. The entropy of this source determines the channel capacity

which is necessary and sufficient. In the it example the only information

retained is that all the digits are chosen from the set 0, 1, . . ., 9. In the

case of English one might wish to use the statistical saving possible due to

letter frequencies, but nothing else. The maximum entropy source is then

the first approximation to English and its entropy determines the required

channel capacity.

11. Examples

As a simple example of some of these results consider a source which

produces a sequence of letters chosen from among A, B, C, D with prob-

abilities \, \, I, |, successive symbols being chosen independently. We
have

// - -(f log*+'|log* + flog|)

= |- bits per symbol.

Thus we can approximate a coding system to encode messages from this

source into binary digits with an average of •£ binary digit per symbol.

In this case we can actually achieve the limiting value by the following code

(obtained by the method of the second proof of Theorem 9)

:
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A
B 10

C 110

/; 111

The average number of binary digits used in encoding a sequence of N sym-

bols will be

tf(i Xl + iX2 + fX3)=£iV

It is easily seen that the binary digits 0, 1 have probabilities \, \ so the H for

the coded sequences is one bit per symbol. Since, on the average, we have \

binary symbols per original letter, the entropies on a time basis are the

same. The maximum possible entropy for the original set is log 4=2,
occurring when A , B, C, D have probabilities \, \, \, \. Hence the relative

entropy is £. We can translate the binary sequences into the original set of

symbols on a two-to-one basis by the following table:

00 A'

01 B'

10 C"

11 D'

This double process then encodes the original message into the same symbols

but with an average compression ratio | .

As a second example consider a source which produces a sequence of A 's

and h's with probability p for A and q for P. If p < < </ we have

h = -iog/(i- py-"

= -plogpil-pf-"""

In such a case one can construct a fairly good coding of the message on a

0, 1 channel by sending a special sequence, say 0000, for the infrequent

symbol A and then a sequence indicating the number of B's following it.

This could be indicated by the binary representation with all numbers con-

taining the special sequence deleted. All numbers up to 16 are represented

as usual; 16 is represented by the next binary number after 16 which does

not contain four zeros, namely 17 = 10001, etc.

It can be shown that as p —> the coding approaches ideal provided the

length of the special sequence is properly adjusted.
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PART II: THE DISCRETE CHANNEL WITH NOISE

11. Representation of a Noisy Discrete Channel

We now consider the case where the signal is perturbed by noise during

transmission or at one or the other of the terminals. This means that the

received signal is not necessarily the same as that sent out by the trans-

mitter. Two cases may be distinguished. If a particular transmitted signal

always produces the same received signal, i.e. the received signal is a definite

function of the transmitted signal, then the efFect may be called distortion.

If this function has an inverse—no two transmitted signals producing the

same received signal—distortion may be corrected, at least in principle, by

merely performing the inverse functional operation on the received signal.

The case of interest here is that in which the signal does not always undergo

the same change in transmission. In this case we may assume the received

signal E to be a function of the transmitted signal S and a second variable,

the noise N.

E = f(S, N)

The noise is considered to be a chance variable just as the message was

above. In general it may be represented by a suitable stochastic process.

The most general type of noisy discrete channel we shall consider is a general-

ization of the finite state noise free channel described previously. We

assume a finite number of states and a set of probabilities

This is the probability, if the channel is in state a and symbol i is trans-

mitted, that symbol j will be received and the channel left in state /3. Thus

a and /3 range over the possible states, i over the possible transmitted signals

and j over the possible received signals. In the case where successive sym-

bols are independently perturbed by the noise there is only one state, and

the channel is described by the set of transition probabilities pdj), the prob-

ability of transmitted symbol i being received as j.

If a noisy channel is fed by a source there are two statistical processes at

work: the source and the noise. Thus there are a number of entropies that

can be calculated. First there is the entropy H(x) of the source or of the

input to the channel (these will be equal if the transmitter is non-singular).

The entropy of the output of the channel, i.e. the received signal, will be

denoted by E(y). In the noiseless case H(y) = H(x). The joint entropy of

input and output will be H(xy). Finally there are two conditional entro-

pies Hx (y) and Hy
(x), the entropy of the output when the input is known

and conversely. Among these quantities we have the relations

H(x, y) = H(x) + H x (y) = H(y) + Hy{x)
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All of these entropies can be measured on a per-second or a per-symbol

basis.

12. Equivocation and Channel Capacity

If the channel is noisy it is not in general possible to reconstruct the orig-

inal message or the transmitted signal with certainty by any operation on the

received signal E. There are, however, ways of transmitting the information

which are optimal in combating noise. This is the problem which we now

consider.

Suppose there are two possible symbols and 1, and we are transmitting

at a rate of 1000 symbols per second with probabilities pa = pi = \ . Thus

our source is producing information at the rate of 1000 bits per second. Dur-

ing transmission the noise introduces errors so that, on the average, 1 in 100

is received incorrectly (a as 1, or 1 as 0). What is the rate of transmission

of information? Certainly less than 1000 bits per second since about 1%
of the received symbols are incorrect. Our first impulse might be to say the

rate is 990 bits per second, merely subtracting the expected number of errors.

This is not satisfactory since it fails to take into account the recipient's

lack of knowledge of where the errors occur. We may carry it to an extreme

case and suppose the noise so great that the received symbols are entirely

independent of the transmitted symbols. The probability of receiving 1 is

\ whatever was transmitted and similarly for 0. Then about half of the

received syiribols are correct due to chance alone, and we would be giving

the system credit for transmitting 500 bits per second while actually no

information is being transmitted at all. Equally "good" transmission

would be obtained by dispensing with the channel entirely and flipping a

coin at the receiving point.

Evidently the proper correction to apply to the amount of information

transmitted is the amount of this information which is missing in the re-

ceived signal, or alternatively the uncertainty when we have received a

signal of what was actually sent. From our previous discussion of entropy

as a measure of uncertainty it seems reasonable to use the conditional

entropy of the message, knowing the received signal, as a measure of this

missing information. This is indeed the proper definition, as we shall see

later. Following this idea the rate of actual transmission, R, would be ob-

tained by subtracting from the rate of production (i.e., the entropy of the

source) the average rate of conditional entropy.

R = II(x) - Hy (x)

The conditional entropy Hy
(x) will, for convenience, be called the equi-

vocation. It measures the average ambiguity of the received signal.



408 BELL SYSTEM TECHNICAL JOURNAL

In the example considered above, if a is received the a posteriori prob-

ability that a was transmitted is .99, and that a 1 was transmitted is

.01. These figures are reversed if a 1 is received. Hence

Hv (x)
= - [.99 log .99 + 0.01 log 0.01]

= .081 bits/symbol

or 81 bits per second. We may say that the system is transmitting at a rate

1000 — 81 = 919 bits per second. In the extreme case where a is equally

likely to be received as a or 1 and similarly for 1, the a posteriori proba-

bilities are f , § and

H„(x) = - [*log* + iIog_4]

= 1 bit per symbol

or 1000 bits per second. The rate of transmission is then as it should

be.

The following theorem gives a direct intuitive interpretation of the

equivocation and also serves to justify it as the unique appropriate measure.

We consider a communication system and an observer (or auxiliary device)

who can see both what is sent and what is recovered (with errois

due to noise) . This observer notes the errors in the recovered message and

transmits data to the receiving point over a "correction channel" to enable

the receiver to correct the errors. The situation is indicated schematically

in Fig. 8.

Theorem 10: If the correction channel has a capacity equal to Hb (x) it is

possible to so encode the correction data as to send it over this channel

and correct all but an arbitrarily small fraction e of the errors. This is not

possible if the channel capacity is less than Hy (x).

Roughly then, Hu (x) is the amount of additional information that must be

supplied per second at the receiving point to correct the received message.

To prove the first part, consider long sequences of received message M'

and corresponding original message M. There will be logarithmically

THy(x) of the M's which could reasonably have produced each M'. Thus

we have THy (x) binary digits to send each T seconds. This can be done

with e frequency of errors on a channel of capacity H„(x).

The second part can be proved by noting, first, that for any discrete chance

variables x, y, z

Uy(x, S) > Lly(x)

The left-hand side can be expanded to give

Hy {z) + Hvt{x) > Hy(x)

Hyz (x) > Hv (x) - Hy{z) > Hy{x) - ff(s)
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If we identify x as the output of the source, y as the received signal and z

as the signal sent over the correction channel, then the right-hand side is the

equivocation less the rate of transmission over the correction channel. If

the capacity of this channel is less than the equivocation the right-hand side

will be greater than zero and Hh2 (x) > 0. But this is the uncertainty of

what was sent, knowing both the received signal and the correction signal.

If this is greater than zero the frequency of errors cannot be arbitrarily

small.

Example:

Suppose the errors occur at random in a sequence of binary digits: proba-

bility p that a digit is wrong and q = \ — p that it is right. These errors

can be corrected if their position is known. Thus the correction channel

need only send information as to these positions. This amounts to trans-

CORRECTION DATA

^
'

1

OBSERVER

i

K r\

'

SOURCE TRANSMITTER RECEIVER

Fig. 8— Schematic diagram of a correction system.

CORRECTING
DEVICE

milling from a source which produces binary digits with probability p for

1 (correct) and q for (incorrect). This requires a channel of capacity

- [p log p + q log q]

which is the equivocation of the original system.

The rate of transmission R can be written in two other forms due to the

identities noted above. We have

R = H(x) - Hg {x)

= H(y) - Hx (y)

= H(x) + H(y) - H(x, y).

The first defining expression has already been interpreted as the amount of

information sent less the uncertaintv of what was sent. The second meas-
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ures the amount received less the part of this which is due to noise. The

third is the sum of the two amounts less the joint entropy and therefore in a

sense is the number of bits per second common to the two. Thus all three

expressions have a certain intuitive significance.

The capacity C of a noisy channel should be the maximum possible rate

of transmission, i.e., the rate when the source is properly matched to the

channel. We therefore define the channel capacity by

C = Max (H(x) - Hy (x))

where the maximum is with respect to all possible information sources used

as input to the channel. If the channel is noiseless, Hy (x) = 0. The defini-

tion is then equivalent to that already given for a noiseless channel since the

maximum entropy for the channel is its capacity.

13. The Fundamental Theorem tor a Discrete Channel with

Noise

It may seem surprising that we should define a definite capacity C for

a noisy channel since we can never send certain information in such a case.

It is clear, however, that by sending the information in a redundant form the

probability of errors can be reduced. For example, by repeating the

message many times and by a statistical study of the different received

versions of the message the probability of errors could be made very small.

One would expect, however, that to make this probability of errors approach

zero, the redundancy of the encoding must increase indefinitely, and the rate

of transmission therefore approach zero. This is by no means true. If it

were, there would not be a very well defined capacity, but only a capacity

for a given frequency of errors, or a given equivocation ; the capacity going

down as the error requirements are made more stringent. Actually the

capacity C defined above has a very definite significance. It is possible

to send information at the rate C through the channel with as small a fre-

quency of errors or equivocation as desired by proper encoding. This state-

ment is not true for any rate greater than C. If an attempt is made to

transmit at a higher rate than C, say C + Ri , then there will necessarily

be an equivocation equal to a greater than the excess Ri . Nature takes

payment by requiring just that much uncertainty, so that we are not

actually getting any more than C through correctly.

The situation is indicated in Fig. 9. The rate of information into the

channel is plotted horizontally and the equivocation vertically. Any point

above the heavy line in the shaded region can be attained and those below

cannot. The points on the line cannot in general be attained, but there will

usually be two points on the line that can.
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These results are the main justification for the definition of C and will

now be proved.

Theorem 11. Let a discrete channel have the capacity C and a discrete

source the entropy per second H. If H < C there exists a coding system

such that the output of the source can be transmitted over the channel with

an arbitrarily small frequency of errors (or an arbitrarily small equivocation).

If H > C it is possible to encode the source so that the equivocation is less

than H — C -\- e where e is arbitrarily small. There is no method of encod-

ing which gives an equivocation less than 77 — C.

The method of proving the first part of this theorem is not by exhibiting

a coding method having the desired properties, but by showing that such a

code must exist in a certain group of codes. In fact we will average the

frequency of errors over this group and show that this average can be made

less than c. If the average of a set of numbers is less than e there must

exist at least one in the set which is less than e. This will establish the

desired result.

C H(X)

Fig. 9—The equivocation possible for a given input entropy to a channel.

The capacity C of a noisy channel has been defined as

C = Max (//(.v) - Hy(x))

where x is the input and y the output. The maximization is over all sources

which might be used as input to the channel.

Let So be a source which achieves the maximum capacity C. If this

maximum is not actually achieved by any source let S be a source which

approximates to giving the maximum rate. Suppose S is used as input to

the channel. We consider the possible transmitted and received sequences

of a long duration T. The following will be true:

1. The transmitted sequences fall into two classes, a high probability group

with about 2T" (X) members and the remaining sequences of small total

probability.

2. Similarly the received sequences have a high probability set of about
,r iiui)

members and a low probability set of remaining sequences.

.?. Each high probability output could be produced by about 2

The probability of all other cases has a small total probability.

TH,,(x)
inputs.
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All the e's and 8's implied by the words "small" and "about" in these

statements approach zero as we allow T to increase and So to approach the

maximizing source.

The situation is summarized in Fig. 10 where the input sequences are

points on the left and output sequences points on the right. The fan of

cross lines represents the range of possible causes for a typical output.

Now suppose we have another source producing information at rate R
with R < C. In the period T this source will have 2

1 " high probability

outputs. We wish to associate these with a selection of the possible channe

E

HIGH PROBABILITY _ _
MESSAGES -^^ 2 nlyH(Y )T

• high probability
hJxJt received signal:?"y

REASONABLE CAUSES
FOR EACH E

• REASONABLE EFFECTS •

FROM EACH M
•

Fig. 10—Schematic representation of the relations between inputs and outputs in a

channel.

inputs in such a way as to get a small frequency of errors. We will set up

this association in all possible ways (using, however, only the high proba-

bility group of inputs as determined by the source 5 ) and average the fre-

quency of errors for this large class of possible coding systems. This is the

same as calculating the frequency of errors for a random association of the

messages and channel inputs of duration T. Suppose a particular output

yi is observed. What is the probability of more than one message in the set

of possible causes of y{? There are 2™ messages distributed at random in

2
TH(z)

points. The probability of a particular point being a message is

thus
r.T(R-H(x))
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The probability that none of the points in the fan is a message (apart from

the actual originating message) is

,,_[<_ 2
nR~" (

-
x)) \i Tl'u (x)

Now R < H(x) - H„(x) so R - H(x) = -Hu (x)
- rj with r, positive-

Consequently

p _ (1 _ -y-THyW-TmoTHniz)

approaches (as T —> <*

)

1 - 2~T\

Hence the probability of an error approaches zero and the first part of the

theorem is proved.

The second part of the theorem is easily shown by noting that we could

merely send C bits per second from the source, completely neglecting the

remainder of the information generated. At the receiver the neglected part

gives an equivocation II (x) — C and the part transmitted need only add e.

This limit can also be attained in many other ways, as will be shown when we

consider the continuous case.

The last statement of the theorem is a simple consequence of our definition

of C. Suppose we can encode a source with R = C + a in such a way as to

obtain an equivocation II„(x) = a — e with e positive. Then R = H(x) =

C + a and

H(x) - H„(x) = C + €

with e positive. This contradicts the definition of C as the maximum of

II (x) - Hv(x).

Actually more has been proved than was stated in the theorem. If the

average of a set of numbers is within t of their maximum, a fraction of at

most \/^can be more than y/\ below the maximum. Since e is arbitrarily

small we can say that almost all the systems are arbitrarily close to the ideal.

14. Discussion

The demonstration of theorem 11, while not a pure existence proof, has

some of the deficiencies of such proofs. An attempt to obtain a good

approximation to ideal coding by following the method of the proof is gen-

erally impractical. In fact, apart from some rather trivial cases and

certain limiting situations, no explicit description of a series of approxima-

tion to the ideal has been found. Probably this is no accident but is related

to the difficulty of giving an explicit construction for a good approximation

to a random sequence.
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All approximation to the ideal would have the property that if the signal

is altered in a reasonable way by the noise, the original can still be recovered.

Tn other words the alteration will not in general bring it closer to another

reasonable signal than the original. This is accomplished at the cost of a

certain amount of redundancy in the coding. The redundancy must be

introduced in the proper way to combat the particular noise structure

involved. However, any redundancy in the source will usually help if it is

utilized at the receiving point. In particular, if the source already has a

certain redundancy and no attempt is made to eliminate it in matching to the

channel, this redundancy will help combat noise. For example, in a noiseless

telegraph channel one could save about 50% in time by proper encoding of

the messages. This is not done and most of the redundnacy of English

remains in the channel symbols. This has the advantage, however, of

allowing considerable noise in the channel. A sizable fraction of the letters

can be received incorrectly and still reconstructed by the context. In

fact this is probably not a bad approximation to the ideal in many cases,

since the statistical structure of English is rather involved and the reasonable

English sequences are not too far (in the sense required for theorem) from a

random selection.

As in the noiseless case a delay is generally required to approach the ideal

encoding. It now has the additional function of allowing a large sample of

noise to affect the signal before any judgment is made at the receiving point

as to the original message. Increasing the sample size always sharpens the

possible statistical assertions.

The content of theorem 11 and its proof can be formulated in a somewhat

different way which exhibits the connection with the noiseless case more

clearly. Consider the possible signals of duration T and suppose a subset

of them is selected to be used. Let those in the subset all be used with equal

probability, and suppose the receiver is constructed to select, as the original

signal, the most probable cause from the subset, when a perturbed signal

is received. We define N(T, q) to be the maximum number of signals we

can choose for the subset such that the probability of an incorrect inter-

pretation is less than or equal to q.

Theorem 12: Lim -°—J^— - = C, where C is the channel capacity, pro-

T-.00 I

vided that q does not equal or 1

.

In other words, no matter how we set our limits of reliability, we can

distinguish reliably in time T enough messages to correspond to about CT

bits, when T is sufficiently large. Theorem 12 can be compared with the

definition of the capacity of a noiseless channel given in section 1.
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15. Example of a Discrete Channel and Its Capacity

A simple example of a discrete channel is indicated in Fig. 11. There

are three possible symbols. The first is never affected by noise. The second

and third each have probability p of coming through undisturbed, and q

of being changed into the other of the pair. We have (letting «= — [/> log

•s
- P

TRANSMITTED
SYMBOLS

RECEIVED
SYMBOLS

p

Fig. 11—Example of a discrete channel.

p + q log </] and P and Q be the probabilities of using the first or second

symbols)

H(x) = -PlogP- 2QlogQ

II„(x) = 2Qa

We wish to choose P and Q in such a way as to maximize H(x) — Hy (x),

subject to the constraint P -f- 2Q = 1. Hence we consider

U = -7Mog P - 20 log O - 2Qa + X(P + 20

d±= -1 -logP + X =

— = -2-2 logO - 2a + 2\ = 0.

Eliminating A

log P = log Q + a

p = Qe
a =

Qfl

/3+ 2
l + 2"

The channel capacity is then

( = log —— .
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Note how this checks the obvious values in the cases p = 1 and p = \ .

In the first, = 1 and C = log 3, which is correct since the channel is then

noiseless with three possible symbols. If p = \, (3 = 2 and C = log 2.

Here the second and third symbols cannot be distinguished at all and act

together like one symbol. The first symbol is used with probability P =

\ and the second and third together with probability \ . This may be

distributed in any desired way and still achieve the maximum capacity.

For intermediate values of p the channel capacity will lie between log

2 and log 3. The distinction between the second and third symbols conveys

some information but not as much as in the noiseless case. The first symbol

is used somewhat more frequently than the other two because of its freedom

from noise.

16. The Channel Capacity in Certain Special Cases

If the noise affects successive channel symbols independently it can be

described by a set of transition probabilities pa . This is the probability,

if symbol i is sent, that j will be received. The maximum channel rate is

then given by the maximum of

Z Pi Pa log Z P> Pa ~ Z Pi Pa log Pa
i.j i i.j

where we vary the P, subject to 2i\ = 1. This leads by the method of

Lagrange to the equations,

Z P» log v"p~a"
= m S - 1, 2, • • • .

; Z_f 'iVH
i

Multiplying by P„ and summing on s shows that n = —C. Let the inverse

of p„j (if it exists) be h sl so thatZ KtP»i = 8tj Then

:

s

Z bst Psj log p,j - log Z Pipu = —CzLhst.'

i

.Z Pipit = exp [C Z htl + Z htt p.j log p ti \

Hence:

or,

Pi = Z hu exp [C Z h„ + Z hlt psj log p tj\.

( > s.j

This is the system of equations for determining the maximizing values of

Pi , with C to be determined so that 2 P, = 1. When this is done C will be

the channel capacity, and the P, the proper probabilities for the channel

symbols to achieve this capacity.



MATHEMATICAL THEORY OF COMMUNICATION 417

If each input symbol has the same set of probabilities on the lines emerging

from it, and the same is true of each output symbol, the capacity can be

easily calculated. Examples are shown in Fig. 12. In such a case Hx(y)

is independent of the distribution of probabilities on the input symbols, and

is given by —S pi log />, where the p< are the values of the transition proba-

bilities from any input symbol. The channel capacity is

Max [H{y) - Hx(y)]

= Max H(y) + 2 pi log pi .

The maximum of H(y) is clearly log m where m is the number of output

j/3_—

^4. Xj*^
l/6\

\^l/6
J^^\/\.

1/6/ Vyv^
^/T-

\ 1/3 ^s^v
a b c

Fig. 12—Examples of discrete channels with the same transition probabilities for each

input and for each output.

symbols, since it is possible to make them all equally probable by making

the input symbols equally probable. The channel capacity is therefore

C = log m + 2 pi \og pi.

In Fig. 12a it would be

C = log 4 — log 2 = log 2

.

This could be achieved by using only the 1st and 3d symbols. In Fig. 12b

C = log 4 - I log 3 - \ log 6

= log 4 - log 3 - \ log 2

= log \ 2
s

.

In Fig. 12c we have

C = log 3 - ^log 2 - \ log 3 - | log 6

- log J#$
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Suppose the symbols fall into several groups such that the noise never

causes a symbol in one group to be mistaken for a symbol in another group.

Let the capacity for the ;/th group be C„ when we use only the symbols

in this group. Then it is easily shown that, for best use of the entire set,

the total probability P„ of all symbols in the wth group should be

p. =
2- .

22r"

Within a group the probability is distributed just as it would be if these

were the only symbols being used. The channel capacity is

C = log22c\

17. An Example of Efficient Coding

The following example, although somewhat unrealistic, is a case in which

exact matching to a noisy channel is possible. There are two channel

symbols, and 1, and the noise affects them in blocks of seven symbols. A

block of seven is either transmitted without error, or exactly one symbol of

the seven is incorrect. These eight possibilities are equally likely. We have

C = Max \H(y) - Hx(y)]

= |[7 + |log|]

= 4 bits/symbol

.

An efficient code, allowing complete correction of errors and transmitting at

the rate C, is the following (found by a method due to R. Hamming):

Let a block of seven symbols be Xh X->, . . . X7 . Of these X3 , X6 , X6 and

X7 are message symbols and chosen arbitrarily by the source. The other

three are redundant and calculated as follows:

X4 is chosen to make a = A', + X6 + A' 6 + X7 even

Xo « " " " = X, + X3 + X, + X-,
"

X1
" " " " 7 = *i + -V3 + -VB + A7 "

When a block of seven is received a,/3 and 7 are calculated and if even called

zero, if odd called one. The binary number a 7 then gives the subscript

of the Xi that is incorrect (if there was no error).

APPENDIX 1

The Growth of the Number of Blocks of Symbols With A
Finite State Condition

Let Ni(L) be the number of blocks of symbols of length L ending in state

/. Then we have _
Nj(L) = Z Nt{L - b?f)
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where b\j , b~i, , . . . £>?,• are the length of the symbols which may be chosen

in state i and lead to state j. These are linear difference equations and the

behavior as L —* =c must be of the type

Substituting in the difference equation

AjWL = E-l-H'^y"
1

i.S

or

iS

E (L H'-
h"' - Bu)At = 0.

i s

For this to be possible the determinant

D(\V) = \atJ \
= iZTr-6'"' -8u\

,s

must vanish and this determines IT, which is, of course, the largest real root

of D = 0.

The quantity C is then given by

_ ,. Log VAjWL
, ...

C = Lim p—-1 = log II

/. ->oc L

and we also note that the same growth properties result if we require that all

blocks start in the same (arbitrarily chosen) state.

APPENDIX 2

Derivation of // = —2 />, log />,

("">"") "' >~) = •'(")• From condition (3) we can decompose

a choice from s'" equally likely possibilities into a series of m choices each

from s equally likely possibilities and obtain

A (s
m
) = m A (s)

Similarly

.!(/") = ;/,!(/)

We can choose ;/ arbitrarily large and find an ;;/ to satisfy
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Thus, taking logarithms and dividing by n log s,

in . log / - m , 1

»
—

log s ~ 11 n
or

logj

log 5
< €

where c is arbitrarily small.

Now from the monotonic property of A (n)

A(s
m

) < A(t
n
) < A(s

m+l
)

mA(s)<nA(t)< (m+l)A(s)

Hence, dividing by nA(s),

» A(t)in A{l) ^ m . 1

n ~ A(s) ~ n n
< e

A®
A(s)

logj

logs
< 2«

4(5)

4(0 = -A log*

whereA must be positive to satisfy (2).

Now suppose we have a choice from n possibilities with commeasurable prob-

abilities pi = — where the m are integers. We can break down a choice

from S»j possibilities into a choice from n possibilities with probabilities

pi. . . p„ and then, if the /th was chosen, a choice from m with equal prob-

abilities. Using condition 3 again, we equate the total choice from 2w,

as computed by two methods

K log 2«< = H{pi , . . .
, pn) + K2 pi log n

i

Hence

H = K [2 />,- log 2 »,- - 2 />,• log m]

= -KZpilog^- = -KZptlogpi.

If the /»,- are incommeasurable, they may be approximated by rationals and

the same expression must hold by our continuity assumption. Thus the

expression holds in general. The choice of coefficient A' is a matter of con-

venience and amounts to the choice of a unit of measure.

APPENDIX 3

Theorems on Ergodic Sources

If it is possible to go from any state with P > to any other along a path

of probability p > 0, the system is ergodic and the strong law of large num-

bers can be applied. Thus the number of times a given path p {j in the net-
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work is traversed in a long sequence of length N is about proportional to the

probability of being at i and then choosing this path, PtpaN. If N is large

enough the probability of percentage error ± 8 in this is less than e so that

for all but a set of small probability the actual numbers lie within the limits

(PiPii ± 5)N

Hence nearly all sequences have a probability p given by

p = up^iVii±SiN

log p
and —~ is limited by

^ = 2U>,/>,/± 5) log />,-,-

or

\ogp

X
- ZPipijlogpij <v-

This proves theorem 3.

Theorem 4 follows immediately from this on calculating upper and lower

bounds for n(q) based on the possible range of values of p in Theorem 3.

In the mixed (not ergodic) case if

L-2pi Li

and the entropies of the components are Hi > H? > . . . > H„ we have the

Theorem: Lim -^-^- = f{q) is a decreasing step function,
.V-»oo N

s-1 «

ip(q) = H 3 in the interval ^ a, < q < J*j a,-

.

i i

To prove theorems*5 and 6 first note that Fn is monotonic decreasing be-

cause increasing N adds a subscript to a conditional entropy. A simple

substitution for pBi (Sj) in the definition of FN shows that

FN = N GN - (N - 1) GN-i

and summing this for all N gives Gn = -^ 2 FN . Hence GN > Fy and GN

monotonic decreasing. Also they must approach the same limit. By using

theorem 3 we see that Lim Gs = //.

JV-»oo

APPENDIX 4

Maximizing the Ratio for a System of Constraints

Suppose we have a set of constraints on sequences of symbols that is of

the finite state type and can be represented therefore by a linear graph.
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Let A-? be the lengths of the various symbols that can occur in passing from

state i to state j. What distribution of probabilities Pi for the different

states and p\'j for choosing symbol s in state i and going to state j maximizes

the rate of generating information under these constraints? The constraints

define a discrete channel and the maximum rate must be less than or equal

to the capacity C of this channel, since if all blocks of large length were

equally likely, this rate would result, and if possible this would be best. We
will show that this rate can be achieved by proper choice of the Pi and />,*•

.

The rate in question is
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Hence we maximize
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Solving for />,,

Since
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The correct value of D is the capacity C and the /*> are solutions of

for then

or
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So that if X, satisfy

*Bi Bi

ZliC4" = 7;

Pi = Bai

Both of the sets of equations for B , and 7, can be satisfied since C is such that

\C'(ii - Ba\ =

In this case the rate is
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but

-/', />,,(log Bi - log Bt) = E Pi log Bj - ZPi log Bi =
i

Hence the rate is C and as this could never be exceeded this is the maximum,

justifying the assumed solution.

(To be con!in tied)


